Enterprise Knowledge Base

XML View Documentation
ModelDriven.org
October, 2008

Contents

1Contents

2Overview

2Problems to be solved

3Parts of XML View

3The EKB-XML View REST Servlet

3EKB Read-only URL

4EKB XML Action Document Post (read/write REST API)

4XML Action Document Format and Properties

5User (on the root element)

5Action (on a resource)

6About (on a resource)

6Asset (on a resource)

6Type (on a resource)

6Action (on a predicate)

7Select (on a predicate)

7Reject (on a predicate)

7XSL stylesheet processing instructions

8Supporting information

8RDFXML

9EKB URL format

10Viewpoints and structures

10Examples

10Edit & Query

Overview

XML View is a module of the ModelDriven.org Enterprise Knowledge Base (EKB) that allows access to the knowledge through a standardized XML interface. Anything in the knowledge base can be queried up updated through XML View using standard XML tooling.

An understanding of EKB assets is also required and documented here: http://www.modeldriven.org/projects/EKB/Management%20of%20Change%20and%20Provenance%20in%20a%20RDF%20Repository.pdf
General information about the EKB may be found here: http://www.modeldriven.org/projects/EKB/

[image: image1.emf]Copyright ©2008, Data Access Technologies Inc. / ModelDriven.org

Enterprise Knowledge Base

Configuration Mgmt

Eclipse

Tortoise

Web-UI

User Views

Forms

Browse

Query

File Get/Put

Eclipse IDE

Subversion

Interface

Artifact Repository

Subversion

Orbeon XForms Server

EKB High Level Architecture

Artifact / KB Integration

XML

“

Rest

”

Interface

Knowledge Base

Sesame RDF KB

Inference & Rules

Transformation

Eclipse EMF Adapter* Semantic Web Interface

Shared Concepts

Green = Existing Open Source

In the above high level architecture, XML view is behind the “XML Rest interface” and is intended as the primary interface for on-line tools and user interfaces. Please also see the “XML View powerpoint”.
Problems to be solved
XML provides a general format for structured data but from the perspective of an interface to a data set it does not inherently provide:

· A way to create, modify or delete a XML document that is composed of multiple independent parts
· A way to deal with a document constructed from multiple resources

· A simple “query by example” interface

· A way to handle update concurrency and versioning

· A way to know the authoritative source of a document

In addition, RDF (The EKB internal form of storage) is inherently unstructured. This has the advantage that such information can more easily be repurposed for other uses with other structures – it has the disadvantage that most use cases for information require some structure. XML view has a way to add structure to the information depending on the desired use and viewpoint.

Parts of XML View

The EKB-XML View REST Servlet

XML view has two basic interfaces: A read-only URL and a read/write REST API.

EKB Read-only URL

The read-only URL is intended to get an XML document about a single resource (or entity). Information about such a resource is located in one or more data assets (Ontologies) under the management of the EKB.

The URL to retrieve a resource from the knowledge base has multiple parts:
· The Request URL of the EKB asset to query. This will have an EKB asset structure (See EKB URL Format, below). Note that any asset imported by the asset at the request URL will also be used in the query.
· An “about=” query parameter specifying the logical id of the resource. This parameter must be URL encoded.
· Example: http://ekb.modeldriven.org/asset/head/root/asserted/SC/Ontologies/ArchitectureOntology/Libraries/Authorities.owl?about=http%3A%2F%2Fwww.modeldriven.org%2F2008%2FArchitectureOntology%2FLibraries%2FAuthorities.owl%23RobertSeay
· An “id=” query parameter to specify a resource located within the request URL.
· Example: http://ekb.modeldriven.org/asset/head/root/asserted/SC/Ontologies/ArchitectureOntology/Libraries/Authorities.owl?id= RobertSeay
· Note that the use of id is equivalent to the use of about, id simply uses the default namespace of the asset so that it doesn’t have to be known or repeated in the URL.
· A “viewpoint=” query parameter to specify the desired structure or viewpoint (other than the default). This parameter must be URL encoded.

· Example: http://ekb.modeldriven.org/asset/head/root/asserted/SC/Ontologies/ArchitectureOntology/Libraries/Authorities.owl?id= RobertSeay&viewpoint=http%3A%2F%2Fwww.modeldriven.org%2F2008%2FArchitectureOntology%2FLibraries%2FXMLStructures.owl%23DataAssetViewpoint
· A viewpoint may also directly specify a structure rather than a viewpoint. A viewpoint is a set of structures for various types while a structure is for a single type. A viewpoint will select the “best” structure for a given instance.
· The viewpoint specifies what information should be returned about the resource.
EKB XML Action Document Post (read/write REST API)
An “XML Action Document” (See below) may be posted to an EKB asset. The actions specified in the action document will then be performed on that asset and any result queries or exception documents returned. Posting an XML action can perform almost any set of queries or CRUD operations on the EKB in one transaction.
Note that changes in RDF can be tricky – this is something we want to look at. If asset A imports asset B and asset B has a resource “#fido”, if you post to asset A you may still make statements about #fido, which will be saved in asset A. you may not, however, make changes to asset B unless you specify that in an “asset=../B.owl” statement.

The XML action document may be posed anywhere in the EKB, including the global URL (which can see everything in the EKB but write to nothing). The global asset URL is: “.../asset/head/root/asserted/RDFS/*”. A post to the global asset URL may still contain asset= properties to allow write access.
Having “policies” for where to write information is an improvement we are looking at.
XML Action Document Format and Properties
While the request URL provides read-only access to a single resource the XML actions interface provides general query and “CRUD” capabilities for a set of resources in the knowledge base. These capabilities are specified by adding attributes to the domain specific XML document that specify the required actions and information, creating an XML action document. The XML action document is posted to the URL of an asset under control of the EKB and will then perform the requested actions on the resources and return a result.
The theory of XML action documents is that they use the same structure and vocabulary as an instance document and the same schema or structure. Properties are then added to that document to specify what the EKB should do (the action) or what asset it should operate on. Thus XML actions “mark up” an instance document to perform CRUD and query by example operations. Non-crud operations can also be supported if the subject of the document implies some further action.

By default an action document will do nothing and any instance data is ignored. Action properties must be added to cause actions to be performed.

The properties used for action documents are:

User (on the root element)

Identity of the user who is making the changes.

Note: This may be replaced with a user session and/or “cookie”.
Action (on a resource)

A resource represented in an XML may have an “action=<action keyword>” property that specifies what should be done to the document. The following sections document the specific actions that may be performed on a resource.
Example:

<?xml version="1.0" encoding="UTF-8" ?>

- <xstruct:Authority xmlns:xstruct="ekb:asset/head/root/asserted/SC/Ontologies/ArchitectureOntology/Libraries/XMLStructures.owl#" xmlns:auth="http://www.modeldriven.org/2008/ArchitectureOntology/Authority.owl#"

- <auth:Authority action="query">

 <rdfs:label reject="matches">J*</rdfs:label>

 </auth:Authority>

 </xstruct:Authority>

Action=edit
The resource will be edited based on the enclosed elements action properties.
Action=create

The resource will be created. All nested elements will implicitly have a “set” action such that the values of the nested elements will be the initial values of the created resource.

If it already exists an exception is raised.
Action=delete

The nested element will be deleted. Note that “about” or a selection must be set to specify what element to delete.

There are currently no cascade delete rules.

Action=query

Query will return the selected elements in a response document. The tag name of the resource will define the type to return. Any additional constraints on what is to be returned should be specified in select properties.

The structure of the returned data will depend on the viewpoint specified as the root node of the document. The combination of query and select provides a “query by example” capability.
Example query rejecting labels matching “J*”.

<xstruct:Authority

xmlns:xstruct="ekb:asset/head/root/asserted/SC/Ontologies/ArchitectureOntology/Libraries/XMLStructures.owl#"

xmlns:auth="http://www.modeldriven.org/2008/ArchitectureOntology/Authority.owl#"

xmlns:Versioning="http://www.modeldriven.org/2008/ArchitectureOntology/Versioning.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<auth:Authority action="query">

<rdfs:label reject="matches">J*</rdfs:label>

</auth:Authority>

</xstruct:Authority>
About (on a resource)

Defines the identity of the resource as a URI. In most cases this will always be specified for an existing element (and will come from a query). For a new element it is not normally specified but an explicit identity may be specified if required.

Example: A person element about “Nilesh-k”

<behavior:performer>

<Actors:Person rdf:about="http://modeldriven.org/people/nilesh-k">

 <rdf-schema:label>nilesh-k</rdf-schema:label>

</Actors:Person>

</behavior:performer>

Note that the identity of the resource is not the same as the identity of the asset the information is contained in. The identity of the resource is logical, where as the asset is a physical “document” that can be retrieved.
Asset (on a resource)

Specifies the EKB asset that will be modified, overriding the asset specified in the request URL. Assets may be nested allowing multiple assets to be updated in one action.
Type (on a resource)

Specifies the type to create – this can be a resource type or a primitive type but is normally used with primitive types as the type of a resource is specified by its tag name.
Action (on a predicate)

Action=set

The new value(s) specified in the predicate element is set without removing any prior values.
Action=insert

The new value(s) are inserted into the list of values. The nested element is created if it does not already exits.
Action=remove

The element values are removed. If it does not exist an exception is raised.
Action=replace

All existing values for the predicate are removed and the new value(s) added.
Select (on a predicate)

Select is used in combination with query to identify a set of elements. Select may be on nested elements and the value compared may be selected as well.
Select=equals

The element value is the same as (one of) the nested values, intended for single value elements.
Select=contains

The element value is the same as (one of) the nested values, intended for multi-value elements.
Select=is a

The element has a type that matches the nested value.
Select=matches

Matches is like an equals but allows for wild cards (“*”) at the beginning or end of the value. Matches requires a scan and is therefore less efficient that equals.
Select=empty

Selects if the nested value is empty.
Select=gt (not yet implemented)

Select=lt (not yet implemented)

Select=ge (not yet implemented)

Select=le (not yet implemented)

Reject (on a predicate)

Reject uses the same arguments as select but the sense is reversed.
XSL stylesheet processing instructions
To support a default rendering of information in the EKB, any XML View query will return an XSL stylesheet processing instruction with each returned document. This stylesheet will cause the returned XML data to be displayed based on this transform in the browser. If no stylesheet is specified, a default will be used as follows:

Default for returned documents: "/asset/head/root/artifact/Bin/Applications/EKB/server/EKBUserInterface/WebContent/WEB-INF/resources/transforms/EKB-Default.xsl";
Default for exceptions:

"/asset/head/root/artifact/Bin/Applications/EKB/server/EKBUserInterface/WebContent/WEB-INF/resources/transforms/EKB-Exception.xsl";
These default stylesheets should be checked into the EKB. Depending on the viewpoint used, other stylesheets may be selected. A viewpoint or structure may have a “stylesheet” property that specifies the URL of a the SXSL stylesheet to render that viewpoint. This property is set in the ontology defining the viewpoint.

Here is an example of an XML view document returned with the default stylesheet:

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl" href="/asset/head/root/artifact/Bin/Applications/EKB/server/EKBUserInterface/WebContent/WEB-INF/resources/transforms/EKB-Default.xsl"?>

<DefaultViewpoint:Default_root xmlns:DefaultViewpoint="http://www.modeldriven.org/2008/ArchitectureOntology/DefaultViewpoint.owl#" xmlns:mdp="http://www.modeldriven.org/2007/schema/ModelDrivenProfile.xsd" xmlns:Actors="http://www.modeldriven.org/2008/ArchitectureOntology/Actors.owl#" xmlns:rdf-schema="http://www.w3.org/2000/01/rdf-schema#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" mdp:asset="http://ekb.modeldriven.org/asset/head/root/asserted/SC/Ontologies/ArchitectureOntology/Libraries/Authorities.owl">

 <Actors:Person rdf:about="http://www.modeldriven.org/2008/ArchitectureOntology/Libraries/Authorities.owl#RobertSeay">

 <rdf:type>

 <owl:Class rdf:about="http://www.modeldriven.org/2008/ArchitectureOntology/Authority.owl#Authority"/>

 </rdf:type>

 <rdf-schema:label>Robert Seay</rdf-schema:label>

 </Actors:Person>

</DefaultViewpoint:Default_root>

Note that other, more user specific, mechanisms for binding the stylesheet may be added in the future.

Supporting information
RDFXML

XML View uses an extended form of “RDF XML” in what is called a “stripped format”. Two slides from the presentation serve to clarify this:

· EKB data is represented as RDF triples in a special repository

· Each triple represents {subject, predicate, object}

· The subject and predicate is always a URI

· The object can be either a URI or a literal value

· These triples form a virtual graph

[image: image2.emf]#p1

#p2

“John”

“Jeff”

name

knows

name

#Person

type

type

· Striped RDF/XML is a W3C recommendation that almost works

· This is a bit oversimplified*, but roughly:

· The black-on-tan elements represent subjects and objects

· The blue elements represent properties (kinds of predicates)

[image: image3.emf]<Person>

<name> John </name>

<knows>

<Person>

<name> Jeff </name>

</Person>

</knows>

</Person>

<Person>

<name> John </name>

<knows>

<Person>

<name> Jeff </name>

</Person>

</knows>

</Person>

Copyright © 2008 Model Driven Solutions. March 2008

Person

Person

“John”

“Jeff”

name

knows

name

* This is oversimplified

because each Person node

actually represents an

additional node and an arc:

This turns into an XML

element for the type name and

an XML attribute for the ID /

URI

#p1 #Person

type

The general format of the XML starts with the viewpoint which contains a set of entities structured with respect to that viewpoint. From the entity on the XML elements will alternate between a resource (the entity) and a predicate. Here is an example:

<XXMLStructures:data_asset_editing_struct>
<Versioning:Data_asset

rdf:about="http://ekb.osera.gov/asset/head/root/asserted/SC/Ontologies/ArchitectureOntology/Actors.owl">

<Authority:responsible_party>

<Authority:Authority

rdf:about="http://www.modeldriven.org/2008/ArchitectureOntology/Libraries/Authorities.owl#cory-c">

<rdf-schema:label>Cory Casanave</rdf-schema:label>

</Authority:Authority>

</Authority:responsible_party>

<rdf-schema:label>Actors.owl</rdf-schema:label>

< /Versioning:Data_asset>

</XXMLStructures:data_asset_editing_struct>

EKB URL format

Information on EKB assets and their URLS is in this document:

There are three URIs of interest in XML view:

· The URI of the physical asset being queried

· The URI of the logical resource within or referenced by the physical asset

· The URI of the “viewpoint” or “structure” to use in viewing the resource.

The URL and URI of the viewpoint may be combined. That is a “#resource” may be appended to an EKB URL and that will be mapped to the default namespace of that asset.

Note: The relationship between namespaces and asset URLS is still complicated and should be reviewed.

Viewpoints and structures

The structure of information returned by XML view is based on a “viewpoint”. If no viewpoint is specified a default will be used which includes the direct properties of the resource and one level out.

The ontology for structure is defined here: http://modeldriven.org/2008/ArchitectureOntology/doc/Structure.html
However for initial use the default structure may be used.

Examples
Edit & Query
The following document, if posted to the “cowfile” will edit the cowfile.

The URL of the cowfile is:
<SampleVersions:DataAssetStructure

xmlns:SampleVersions="http://www.modeldriven.org/2008/ArchitectureOntology/Samples/SampleVersions.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:Versioning="http://www.modeldriven.org/2008/ArchitectureOntology/Versioning.owl#"

xmlns:mdp="http://www.modeldriven.org/2007/schema/ModelDrivenProfile.xsd"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:auth="http://www.modeldriven.org/2008/ArchitectureOntology/Authority.owl#"

mdp:asset="ekb:asset/head/root/asserted/SC/Ontologies/ArchitectureOntology/Samples/SampleVersions.owl">

<Versioning:Data_asset

action="edit"

rdf:about="http://www.modeldriven.org/2008/ArchitectureOntology/Samples/SampleVersions.owl#CowFile">

<rdfs:label>Cow File</rdfs:label>

<auth:responsible_party action="remove">

<auth:Authority

rdf:about="http://www.modeldriven.org/2008/ArchitectureOntology/Samples/SampleVersions.owl#Cory">

<rdfs:label>Cory Casanave</rdfs:label>

<auth:responsible_for>

<Versioning:Data_asset_container

rdf:about="http://www.modeldriven.org/2008/ArchitectureOntology/Samples/SampleVersions.owl#CowFolder">

</Versioning:Data_asset_container>

</auth:responsible_for>

</auth:Authority>

</auth:responsible_party>

<auth:responsible_party

action="insert"

xmlns:ev="http://www.w3.org/2001/xml-events"

xmlns:xxforms="http://orbeon.org/oxf/xml/xforms"

xmlns:DefaultViewpoint="http://www.modeldriven.org/2008/ArchitectureOntology/DefaultViewpoint.owl#"

xmlns:xforms="http://www.w3.org/2002/xforms"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:widget="http://orbeon.org/oxf/xml/widget">

<auth:Authority

rdf:about="http://www.modeldriven.org/2008/ArchitectureOntology/Samples/SampleVersions.owl#Jeff">

<rdfs:label>Jeff Jones</rdfs:label>

</auth:Authority>

</auth:responsible_party>

<Versioning:has_version>

<Versioning:Data_asset_version

rdf:about="http://www.modeldriven.org/2008/ArchitectureOntology/Samples/SampleVersions.owl#CowFileVersion2">

<rdfs:label>v2</rdfs:label>

</Versioning:Data_asset_version>

</Versioning:has_version>

<Versioning:has_version>

<Versioning:Data_asset_version

rdf:about="http://www.modeldriven.org/2008/ArchitectureOntology/Samples/SampleVersions.owl#CowFileVersion1">

<rdfs:label>v1</rdfs:label>

</Versioning:Data_asset_version>

</Versioning:has_version>

<Versioning:contained_in>

<Versioning:Data_asset_container

rdf:about="http://www.modeldriven.org/2008/ArchitectureOntology/Samples/SampleVersions.owl#CowFolder" />

</Versioning:contained_in>

</Versioning:Data_asset>

<Versioning:Data_asset

action="query"

rdf:about="http://www.modeldriven.org/2008/ArchitectureOntology/Samples/SampleVersions.owl#CowFile"/>

</SampleVersions:DataAssetStructure>

EKB XML View
2
10/23/2008
Copyright © 2008, Data Access Technologies, Inc.

ModelDriven.org

