

Development of Open Source E-Gov
Reference Architecture (OsEra)

Metadata Infrastructure Architecture

With Semantic Core

General Services Administration (GSA)
Office of the Chief Information Officer (CIO)

Produced By

OsEra Metadata 5/20/2006 1

Table Of Contents

Overview... 3

Problem Statement .. 3

Languages and sources of information ... 4

OsEra Metadata Architecture.. 6

Requirements .. 7

Metadata Infrastructure Architecture.. 8

Reference Ontologies.. 9

Semantic Core... 11

Concepts in the semantic core... 13

Defining semantic components... 14

Mapping into and out of OsEra & Semantic Core.. 16

Mapping use cases .. 16

Reverse engineering.. 16

External views, Round-trip modeling ... 17

Fully mapped languages ... 17

Subset Languages (Views).. 17

Derivation & Artifact Generation ... 18

Mapping Concepts .. 18

Round trip modeling & preservation of concept identity ... 18

Provisioning Specification .. 19

OsEra Metadata 5/20/2006 2

Overview
The OsEra Metadata infrastructure will provide a “smart” repository for architectures at
multiple levels of abstraction, from multiple sources and with multiple views. This
infrastructure will integrate the OMG-Meta Object Facility (MOF) and Resource
Description Framework (RDF) and RDF-Schema as defined by W3C as part of the
“Semantic Web” initiative and will integrate the specification and provisioning concepts
of the OMG Model Driven Architecture (MDA).

Problem Statement
Information about government processes, information and I.T. systems currently exists in
a diverse set of forms, formats, repositories and documents with little to no management
and coordination. The result is that there is rampant redundancy in the developing and
re-developing the same information, different models, architectures and studies about the
same things. Understanding and integrating this wide Varity of information is almost
impossible and thus generally such understanding and integration is not achieved.

Not only is this information expensive and time-consuming to develop, re-analyzing the
same area results in inconsistent designs, lack of interoperability, redundant systems and
missed opportunities for improvement.

OsEra will replace this fragmentation and loss of information with an architected
approach to developing, integrating and managing information across the government.

OsEra will provide this architected approach by bringing together a suite of open source
technologies to provide for architecture creation, integration and management. This suite
will utilize Semantic Web and Model Driven Architecture (MDA) technologies to derive
value out of architectures through the automated production of specification,
implementation and testing artifacts to automate the enterprise based on business
requirements.

Central to OsEra are the concepts of a system and an architecture. A system is any
complex set of resources and behaviors integrated for a purpose. An organization is a
kind of system, a business process is a system, as is a computer application. Architecture
is a specification for how a system may or will fulfill its purpose. Architectures exist at
many levels, from the architecture for a new venture to the architecture of a physical part
in a machine. Understanding the connections between various systems and architectures
is the means for more effectively realizing the goals. Architectures are expressed in
models and ontologies (the term “model” and “ontology” are used interchangeable as
expressions of architectures but ontologies are also used for other purposes thus we
generally use “model” to include specification of an architecture).

Systems defined by multiple languages
Modern enterprises, governments and computer systems are complex; they are complex
in terms of what they do, how they do these things and on how they use various
technologies. Due to this complexity systems are defined using a set of languages, each
language is used to prepare various models that, together, define the system.

OsEra Metadata 5/20/2006 3

The following picture illustrates how a set of specifications in various languages may

serve to define a system.

ur challenge, as system developers, is that these languages overlap and the
be

hole

 its own viewpoint,

stems from multiple vendors and contractors with

anguages and sources of information
itectures from multiple sources

System Definition
Environment

System
Business or
Technical

Language
UML Class

Diagram

Language
Activity
Diagram

Language
RAC

Language
Java

Language
ER

Language
WSDL

Language
Excel

Language
EJB Descriptor

Class
Diagram

Language
OWL

Activites

Web Service
Specification

Ontology

Security
Specification

Database
Schema

EJB Ear
Specification

Java classes

Requirements
Key
Uses

Defines

Artifact

Key
Uses

Defines

Artifact

O
specifications are always inconsistent. The same element in the system may
represented in multiple specifications in multiple languages. Understanding the w
system becomes difficult and error prone. The connection between these languages is
often lost as the system definition evolves over time. In fact, it is rare that the entire
system is understood by anybody or documented in one place.

With each language being independently conceived and designed from
there is no way to understand or refer to the touch points between the languages –
whether they are saying the same thing or are stating unique facts about the same thing.
This lack of integration is a source of complexity and error in our systems and the reason
behind many system design failures.

Compound the above with multiple sy
multiple architectural approaches. The fragmentation of information is profound.

L
OsEra will be used to manage, integrate and create arch
and using multiple tools based on different languages. There is no assumption that the
OsEra model or infrastructure will be required or suitable for all purposes. To this end,

OsEra Metadata 5/20/2006 4

OsEra must be able to deal with architectures expressed using differently languages and
idioms. The languages of most concern for architectures are;

• OMG-UML-2 (Particularly class, activity and sequence diagrams)

Enterprise Architecture

elational

ogies – XML, XML Schema, WSDL and BEPL

l formats. E.G. System Architect, Component-X, Rational

o this end OsEra will be required to understand the semantics embodied in architectures

• OWL (Actually, ontologies expressed in OWL)

• DoDaf

• Federal

• OMG-Edoc

• BPMN

• Entity R

• The XML technol

• Zackman Framework

• Various proprietary too
Rose, DOORS, Metis, Etc.

T
expressed using these formalisms and make sense of them together, as a consistent view
of the enterprise.

OsEra Metadata 5/20/2006 5

OsEra Metadata Architecture
The OsEra Metadata management facilities provide for the definition, understanding,
manipulation and management of architecture models. It fits into and supports the
overall OsEra Architecture and capabilities.

There is currently duplication of capability between the OMG-MOF infrastructure and
the RDF infrastructure. Due to the requirement to interface with systems in both
environments we intend on bridging these infrastructures such that our models may be
used from either view. Ultimately one or the other will probably be selected as “core”
and the other a mapping. But at this time they exist as peer infrastructures. As we refer
to our metadata infrastructure we are including both the MOF and RDF interfaces to the
models.

OsEra Metadata Infrastructure

RDF Metadata Repository

Semantic Core
Meta Ontology

Business
Architecture

Technology
Architecture

Supporting
OntologiesUnified

Architecture
Technology
Architecture

Source
Architecture

Other RDF
Repositories
& Ontologies

Source
Material

Procurement
Specification

System
Specification Workflow System

Components

Provisioning Provisioning

Ontology Assisted
Architecture
Integration and
Definition

Provisioning

Source
Material

OsEra
ViewsWeb

Access

Ontology
Infrencing
Engines

The Metadata infrastructure is the hub into which the various capabilities of OsEra
integrate. This includes the 2-way synchronization with external sources of information -
models, architectures, ontologies, requirements, processes, etc, - anything that helps
define the enterprise and how it operates.

Architects use “OsEra View” tools to manage, design and integrate the information from
the source material, creating a unified view of the enterprise from business requirements
to system interfaces. Views may be provided by “internal” or external tools, integrating
the specification and modeling environment. The architecture design and integration
process is assisted with smart, ontology driven infrencing engines.

OsEra architectures are not an end, but a means to an end – to improve the enterprise.
Using MDA techniques, the architectures will help produce acquisition specifications,
documentation, system specifications, DBMS systems, ontologies, component
implementation and workflow systems.

OsEra Metadata 5/20/2006 6

Requirements
The following are some of the requirements that have been identified for the metadata
infrastructure and the inference capabilities used in that infrastructure.

• Our meta-meta model is designed to express concepts of languages, it is “meta
recursive” in that it is self-expressive so that we can express semantics of the
concepts we are describing (E.G. create the concept of “role” and instantiate it).
Note that this conflicts with a basic OWL-DL restriction.

• Extensibility; we can add concepts and inference that corresponds to the
semantics we are describing. (E.G. adding the concept of sequence - this happens
after that) We need to capture a wide range of the semantics used for
architectures. We can not limit the concepts represented to those that can be
reasoned over, but we should be able to inference across those concepts that can
support it.

• It must work in “real time” as we load and work with models.

• Inferencing needs to assist the logical process and validation of architectures, not
prove theories.

• Architectures embody specifications, the use of ontologies for specification is
somewhat different than knowledge discovery or describing human knowlage in
general. It is more reasonable to say that some statement violates the
specification that to make many of the assumptions that reasoners currently make
– such as that 2 individuals are in fact the same individual.

• OsEra will contain multiple architectures that make statements about the same
thing – these will be the point of integration. These architectures, some of which
will be existing, will not necessarily be consistent with each other. We need to be
able to embrace different points of view, conflicting definitions and a concept of
context. Ontology tools should help in finding these points of integration and
resolving conflicts.

• Architectures change over time and the ability to understand that change is
crucial. We need to understand the provenance of information and retain a history
of change with the provenance of those changes.

• Concepts of context and provenance should be able to disambiguate multiple
points of view and change over time.

• Architectures should be able to be expressed and related at multiple levels of
abstraction, from business requirements through technology implementations.
Where possible automated provisioning shall be used. Where automation is not
practical, traceability should be provided between the levels of abstraction and
different views.

OsEra Metadata 5/20/2006 7

• Whatever abstractions OsEra deals with can not be a “closed set”, it needs the
ability to be expanded as new models, idioms and languages are integrated.
OsEra can not limit the expressivity of the languages it integrates.

• OsEra will not be one thing in one place, there will most likely be no central point
of control for architectures. The set of architectures must be provided by a
distributed and federated system of systems.

• OsEra will provide a unified model of the enterprise but this is not monolithic.
The model (or ontology) of the enterprise must be accessible with a set of views,
each designed for its purpose and audience. However, these views are not
independent – they must be views of the same underlying model. Changes made
in one view must be consistently propagated to other views through the core
OsEra view (Semantic core).

Metadata Infrastructure Architecture

g technology components;

F store, support

transform

lying models with the semantics and

Metadata DBMS

RDF Store

External
Artifacts

Web
Server

Query Inference & Rules

Provisioning
Eclipse UI Support

OsEra Views OsEra
OntoBots

RDF Metadata Infrastructure API

he OsEra Metadata infrastructure will contain the followinT

• An RDF Store capable of managing sets of enterprise scale architecture with
concurrent distributed development.

• A DBMS to hold the architectures and their metadata

• An RDF query processor in support of access to the RD
inferencing, provisioning and the user interface layer.

• One or more inference and rules engines that help integrate, expand and
the metadata in support of the other layers.

• An API into the metadata supported by query and inferencing. The API will be
able to access an extended view of the under

OsEra Metadata 5/20/2006 8

implications of that model extended by the inferencing support. (For example, a
subclass will show the features and constraints of its superclasses).

Transformation; We expect query, rules and inference to support transformation.
It is unclear if there is additional support required for transformation,

•
 something

•

om
d

The Me

 and inference to help define, manage
ots are pluggable capabilities that assist the

•

ernal systems, architectures
cture.

Re r
alignment. Consider that an organization

 for order management, as part of the analysis they have

f

 be
 into the desired

L

gged” with their relationship to these
 may
ported

nual.

along the lines of a RDF-QVT. Our working assumption is that between query
and rules there will be sufficient capability but this requires more investigation.

The structure of OsEra and the models must allow for separation of concerns
across multiple dimensions. Of utmost importance is the separation between
business concerns and technology concerns. Architectures should be as free fr
technical implications as possible, allowing greater freedom in the selection an
integration of multiple architectures using the MDA design pattern.

tadata infrastructure will support;

• OsEra “OntoBots” that will use ontologies
and integrate architectures. OntoB
architecture and implementation processes using advanced reasoning.

External tools and information through provisioning

• A model driven provisioning layer that transforms ext
and information into and out of the metadata infrastru

• A web server to manage the access to the architecture repository from browsers as
well as external metadata clients using web services

• The eclipse UI layer supporting views of the integrated OsEra architectures.

fe ence Ontologies
Reference ontologies assist in architectural
wants an integrated architecture
imported three architecture models into OsEra. One is a system design model for an
order management system. One is a business process for order management and the last
is an XML vocabulary for orders. All of these are clearly related and relevant. But, o
course, they all use different terms when they are “talking” about the same things,
express different parts of the problem and are not completely consistent.

Just by importing these models into OsEra there is some advantage in that they can
looked at in the same way with the same tools – OsEra can translate them
views. The information model of the system architecture can be compared with the XM
vocabulary. But we would really like more.

Within OsEra there will be reference ontologies for common concepts. As part of
unification, the imported architectures are “ta
common concepts. For example, an “order” and a “PO” may be the same thing but
have different names. OsEra provides a way to match the terms and concepts of im
architectures with existing concepts, and to create new reference concepts as more
architectures are created. These reference architectures are shard and become part of the
OsEra environment. Tagging an architecture is partially automated and partially ma

OsEra Metadata 5/20/2006 9

OsEra OntoBots will suggest mappings that will be confirmed by the analyst. Concepts
that can’t be matched will be manually marked by the analyst. Where new concepts are
uncovered another OntoBot helps the user define that concept. This process is referred to
as “grounding” the architecture.

With architectures and specifications “marked” against a reference, additional OntoBots
can start to guide the user into crea

ting a merged and consistent architecture – with full

to OsEra, tagged
 then a unified architecture is produced.

sEra provisioning is used to import the existing architecture models as well as to

d into OsEra
toBots

traceability back to the original information. Reference ontologies are the glue between
previously unrelated information. The initial reference ontologies are populated from
existing source, such as WordNet and SUMO.

The above diagram shows how these separate artifacts are brought in
with a common concept – such as an order, and

Business
Process
(BPMN)

System
Architecture

(UML)
XML

Vocabulary

OsEra

Process
Model

Component
Model

Document
Model

Order OR_ST_05PO

Reference Ontology
Order Concept Unified

Architecture
Order

Human/Automated
Integration

OntoBot

OntoBot

OntoBot

Technology Artifacts
E.G. Web Service

Provisioning Provisioning

Provisioning

Provisioning

O
generate technology and other artifacts, such as web service specifications.

OsEra provides a general architecture for semantic integration and a “pluggable
architecture” for OntoBots such that as smarter OntoBots are developed with more
advanced technologies (this is a rapidly advancing field) they can be plugge
without damaging the integrity of the architectures in place. In fact, multiple On
could be used together, each for its best purpose.

OsEra Metadata 5/20/2006 10

Semantic Core
The infrastructure architecture, above discusses the technologies to manage architectures.

or managing the semantics of these architectures. Semantic core is
 for architecture and also the “meta model” for the architectures

 are used and combined, essentially idioms of expression

we call

press a
mantic core. No one graphical

s a

DL all have a concept of an
emantic core provides a

ecial sauce of each language.

m

The semantic core is f
the reference ontology
that are represented in OsEra.

While a plethora of languages and notations have been used to specify architectures, there
is a great degree of overlap in what those languages can say – their semantics. There is
also inconsistency in how they
(For example, different architects use UML or OWL in very different ways).

The complicating factor is that different languages and idioms combine these concepts in
very different ways and sometimes use very different ways to express similar concepts.
In semantic core we have “sliced and diced” these concepts into smaller units
“semantic components”. Each semantic component represents a specific fact in the
architecture. Some semantic components are very small and atomic while others
aggregate concepts into common packages and patterns.

The source languages have been analyzed to discover the underlying semantics and
define these as semantic components, wherever possible having just one way to ex
particular idea. The set of semantic components is the se
or textual language may have all the semantic components; languages tend to expres
subset of these concepts for particular purposes. A particular syntax or file format is
mapped to its semantic core representation when it is imported into or exported from
OsEra.

When an architecture model is referenced in OsEra it is mapped to a set of instances in
the RDF store that are instances of the semantic core concepts.

Example;

For example, the computer languages UML, Java and WS
interface, but with some “extra sauce” attached to each. The s
single concept of an interface, and separates the sp

Language
UML Class

Diagram

Language
Java

Language
WSDL

Concept of
an interface

Concept of
an interface

Concept of
an interface

Mapping architectures to the semantic core as a “hub” means that each language or idio
only needs to be mapped once to be integrated with all other semantic core enabled

OsEra Metadata 5/20/2006 11

languages. It also means that architectures can be built that integrate the information
found in multiple source models in multiple languages, something that could not be d
with a point to point mapping between languages. The whole is more than the sum of
parts as patterns of information emerge.

As new languages and idioms are integrated into OsEra,new semantic components are
created to account for any new concepts i

one
 its

ntroduced. In this way OsEra grows in its

ll be defined in it’s self but still

g from a single source or target

r

capability, it is not a fixed model that everything must adapt to – OsEra adapts to the
architectures and languages it represents and integrates.

In the initial phases semantic core components will be represented with RDFS and a
subset of OWL, as semantic core is more developed it wi
utilize RDF and OWL technologies.

This approach to metadata management has several advantages;

• Integration of information from diverse sources

• Translation between languages and views

• Semantic integration of architectures

• Support for OntoBots and provisionin

• Traceability between the source, derivation and use of information

• Independence from specific forms of diagrams, language syntaxes o
technologies.

OsEra Metadata 5/20/2006 12

System Definition
Environment

System
Business or
Technical

Language
UML Class

Diagram

Language
Activity
Diagram

Language
RAC

Language
Java

Language
ER

Language
WSDL

Language
Excel

Language
EJB Descriptor

Class
Diagram

Language
OWL

Activites

Web Service
Specification

Ontology

Security
Specification

Database
Schema

EJB Ear
Specification

Java classes

Requirements
Key
Uses

Defines

Artifact

Key
Uses

Defines

Artifact

Consider the diagram from the start of this document. We may now consider all of the
parts of the system specification views on a common enterprise model instead of
unrelated documents. The common enterprise model is more than the sum of its parts
and the information in one view may leverage the information in another view.

Concepts in the semantic core
The semantic core is designed to be extensible, but the initial core has a specific range of
concepts to be expressed, those that are the most common in government architecture.
The areas of concern are;

• Requirements and requirement satisfaction

• Information and data modeling (E.G. UML class modeling, Entity relational)

• Business processes (E.G. UML activity diagrams, BPMN)

• Collaboration (E.G. OMG Edoc, EBXML)

• Organizational Structure

• Value Chains

• Security Profiles

• Service interfaces (E.G. Web services)

• Federal Enterprise Architecture

• Source and pedigree of information

OsEra Metadata 5/20/2006 13

• Ontologies (E.G. OWL)

• Description of the core it’s self (E.G. RDF Schema)

• Technology Mapping (E.G. MOF-QVT)

Defining semantic components
The semantic core, as a set of related semantic components will be defined in a smaller
set of “meta meta concepts”. The primary meta meta language used for defining
Semantic Core (particularly in the bootstrap phase) will be RDF-Schema. RDF Schema
provides the basic concepts we need and a strong extension capability with few
limitations. Additional concepts, as required, will be utilized from OWL.

It is our expectation that this definition will utilize these core RDF-Schema concepts
combined with a rule based reasoner to support the inference capability required for the
metadata infrastructure. One reason for this approach is to allow the “meta circularity”
and extensibility that is at the core of the semantic core, which is not a capability of
OWL-DL.

Discussion of rule based approach
An approach to reasoners that seems important here is; OWL-DLP (http://logic.aifb.uni-
karlsruhe.de/) seems to be the formalism of the horn clause approach. This is defined is the
intersection of DL and horn clause reasoners – here is a formal definition:

http://www.cs.man.ac.uk/~horrocks/Publications/download/2003/p117-grosof.pdf The rule based
(horn clause) approach seems to imply some capability to express new inference rules as well as
a relaxation on the restriction against meta-recursion. Also keep in mind that we will certainly be
expressing concepts not in OWL, very specifically time and context based semantics. (Describing
processes without describing “change” is a bit limiting).

As defined, OWL-DLP does not relax the meta-restriction as it is a pure subset of OWL-DL.
However, the reasoners that use the horn clause approach generally relax that restriction – it is a
well known requirement. This seems to be what is used in SWRL
(http://www.daml.org/rules/proposal/). So it looks like OWL-DLP+SWRL provides for fast
inference, extensibility and (possibly) a relaxation of the meta restriction. It doesn’t look like any of
the other OWL-DLP restrictions are a problem.

Another pragmatic consideration is TURNING OFF some inference. From the perspective of a
specification, the way these reasoners join instances to satisfy constraints seems like the wrong
answer 90% of the time. It is great to be able to say this and that are the same thing, it is wrong
to assume so just because some fact 100 yards away implies it (suggests it – fine, but that is not
what happens). We would really like something more like an “error message” when constraints
are violated instead of deciding the president is a rock (no comments on similarity, please).

So what I suspect is that the kind of inferencing we need is developing along this DLP/SWRL line,
more so than the DL reasoners, like Pellet. Also, that while not yet standard, the tools
implementing this allow for both extensibility (by defining new rules) as well as meta-circularity. A
specific instance of this is RDF Gateway (not sure about Jena or Sesame – more investigation is
required) that explicitly supports these capabilities.

From a pragmatic point of view, it seems very clear that you could express the kind of rules we
need – here is the part of RDF gateway that talks about it:
http://www.intellidimension.com/pages/rdfgateway/dev-guide/db/rules.rsp. To get things going

OsEra Metadata 5/20/2006 14

http://logic.aifb.uni-karlsruhe.de/
http://logic.aifb.uni-karlsruhe.de/
http://www.cs.man.ac.uk/~horrocks/Publications/download/2003/p117-grosof.pdf
http://www.daml.org/rules/proposal/
http://www.intellidimension.com/pages/rdfgateway/dev-guide/db/rules.rsp

(bootstrap) it may make sense to use RDF-Gateway even if it is not open source, but one of the
Java open source platforms would be great if they can support it.

Another potential approach for the meta-circular thing is to use the class/instance pattern. But, it
would be better to do that in an export mapping so that our core semantic didn’t get polluted.

Finally, another approach is to just use RDFS inferencing and add our own rules for what we
need (Such as cardinality) – which may not be that difficult.

So the point of this discussion is to get input on identifying the inference infrastructure we can use
that satisfies the above meta-requirements. This is what we would use for the semantic core
inside OsEra and probably for transformations. It is not necessarily what would be used by other
tools that may process ontologies in OsEra for other purposes (E.G. identifying conflicts or
potential unifications) – if those tools had other requirements (Such as OWL-DL) we would have
to export a suitable view (just like generating code for a runtime engine).

OsEra Metadata 5/20/2006 15

Mapping into and out of OsEra & Semantic Core
Integrating with external models and artifacts is done for a variety of reasons and with
various capabilities. The following are the common use cases;

Mapping use cases

Reverse engineering

External
Artifacts

Semantic Core

Imported Source
Model

Provision

Implied
Model

Provision

Capturing information from an external source (usually a technology) is a one-way or one
time activity. Reverse engineering involves applying patterns to external information to
discover the model underneath. The source of the information is captured but there is no
expectation of updating the source information from OsEra.

The first step in reverse engineering is to capture
the concepts in the source artifacts as a
model, this may involve some user
interaction. The second step is to apply
patterns to produce an “implied” higher
level model from the source model. Producing the
implied model uses patterns and huristics that are not
nessisaraly reversable, thus making it a one-way (and perhaps one
time) operation.

Since reverse engineering uses patterns to achieve the concept mapping and there are
choices in such patterns, reverse engineering is “parameterized” – there are ways to
specify the options for the mapping. Reverse engineering also may involve user
interaction, choices and wizards.

OsEra Metadata 5/20/2006 16

External views, Round-trip modeling
Keeping an external view of an architecture in sync with the OsEra repository. Such an
external view may either be a full or partial representation of the unified architecture.

Fully mapped languages

Semantic Core

External Representation

Provision

Semantic Component
Concept Extensions

A select set of languages will be able to represent the full extent of the
information in the semantic core. Initially only RDF/RDFS will
have such a representation. In that the semantic core is an open
set of semantic components, any fully mapped languages will
require extensive extension capability. Candidates include UML-2,
OWL-Full and some formal languages. A fully mapped language will contain
some of the same concepts as are represented in the semantic core
– these will be mapped directly. Other concepts that do not exist
directly will utilize the languages extension capability. A fully
mapped language is equivelent in expressability to the semantic
core.

Example; The semantic core will certainly contain the concept of
an “activity” (in the sense of UML-2 activity diagrams). Such a concept does not exist in
OWL (Even OWL full). The concept of an activity will have to be defined in OWL as
subtype of owl:class. We will then map the activity semantic component to an owl:
activity.

Subset Languages (Views)

Semantic Core

View Subset

View Representation

Provision

Most mappings will utilize only a subset of the information in
OsEra and will map to existing models, profiles or
ontologies as domain specific languages. For example,
BPEL (Business Process Specification Language)
contains a well developed set of concepts for activity
modeling. An activity modeling view of the information in
OsEra will be mapped to BPEL.. This type of mapping will support 2-
way integration, changes to the model may be made in BPEL, in OsEra
or in another view that supports activities. These changes will be
merged back into a model in OsEra as defined by the semantic
core. A view is a subset of the semantic core mapped to a
representation in another form.

Another, similar, example is OWL-S, OWL-S provides for an ontology of a web service.
An OWL-S mapping will use just the concepts defined in OWL-S and be faithful to that
view, but users of that view will not have direct access to the other information in OsEra
– for that they would need to look at another view.

Some “native” views will be simply user interfaces on the OsEra models, implemented in
the OsEra environment.

OsEra Metadata 5/20/2006 17

Derivation & Artifact Generation

External
Artifacts

Semantic Core

High Level
Model

P
rovision

Derivative Model
Model

Provision

Artifact generation is the production of documents, specifications, code or
implementations at a lower level of abstraction – a combination of
producing a derived model and provisioning external artifacts.
Artifact generation is used to specify or implement how some
concept is to be achieved based on specific and selectable
patterns. For example, the concept of a business interface
may generate various Java and J2EE artifacts to implement
that business interface. Due to the information loss on
generation and since various and complex patterns are used
that are not necessarily reversible, artifact generation is one-
way. A common example of this pattern is the typical computer
language compiler.

Since artifact generation uses patterns to achieve the concept mapping
and there are choices in such patterns, artifact generation is
“parameterized” – there are ways to specify the options for the
mapping.

Artifact generation includes “code generation”, production of specifications (E.G. for
RFPs), Documentation, etc. This is the most discuss part of utilizing MDA but is in fact,
only one of its value propositions.

Mapping Concepts

Round trip modeling & preservation of concept identity
External models and views that are synchronized with OsEra support 2-way integration
(Round trip engineering). To support round-trip engineering and the integrity of models
the preservation of a concepts “identity” is crucial. When a concept (instance of a
semantic component) is exported it will be exported with a URI of the concept in OsEra.
When information is imported from the external view this URI is retained such that it is
clear what concepts are being changed, added or removed. Concept identity is a
requirement for a 2-way mapping and may use standard or ad-hoc mechanisms of the
target language.

OsEra Metadata 5/20/2006 18

Provisioning
Specification Input Set Output Type

Models

Artifacts

Parameters

Provisioning

Provisioning
Specification

Models

Artifacts

To map into or out of semantic
core, or to provision from one
layer of abstraction to another
within semantic core, requires a
provisioning specification for
that mapping. A mapping
specification must exist or be
derivable for the specific set of input information and the desired set of output
information.

The provisioning specification is dynamically bound based on the
information in the input set and the desired output type. Provisioning

Specification

Provisioning
SpecificationProvisioning

SpecificationProvisioning
SpecificationProvisioning

Specification

The provision specification is not monolithic but is it’s self composed of
sub-specifications. For example, at the “top level” there may be a
“Semantic core to WSDL” mapping, but this would be composed of very
detailed sub-components such as “information flow to operation”.

In the detailed architecture this provisioning pattern is evident in multiple places. For
example

This provisioning component is responsible for the integration between an information
modeling view and semantic core.

Inside this component there are provisioning specifications for each “direction”

OsEra Metadata 5/20/2006 19

Each of which may be composed of multiple sub-components.

Detailed specification of provisioning
At this time, specification of provisioning uses a combination of model and technology-
specific forms, such as XSLT and ANT. Ultimately provisioning specification will be
fully model based, perhaps using formal methods.

OsEra Metadata 5/20/2006 20

	Overview
	Problem Statement
	Systems defined by multiple languages
	Languages and sources of information

	OsEra Metadata Architecture
	Requirements

	Metadata Infrastructure Architecture
	Reference Ontologies
	Semantic Core
	Concepts in the semantic core
	Defining semantic components
	Discussion of rule based approach

	Mapping into and out of OsEra & Semantic Core
	Mapping use cases
	Reverse engineering
	External views, Round-trip modeling
	Fully mapped languages
	Subset Languages (Views)
	Derivation & Artifact Generation

	Mapping Concepts
	Round trip modeling & preservation of concept identity
	Provisioning Specification
	Detailed specification of provisioning

